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11.1 Development of molten salt reactor at ORNL

In this section, the development history of the molten salt reactor (MSR) at Oak
Ridge National Laboratory (ORNL) is described. The starting point of MSR at
ORNL and their various designs including the final one are explained sequentially.

11.1.1 Liquid fuel reactor, from water to molten salt

At the end of World War II, after ORNL had provided atomic bomb technology,
they started the discussion on future nuclear plants. Its history is described in the
autobiography of Alvin Weinberg, who was a director of ORNL for 18 years from
1955 until 1973 and a development leader of MSR (Weinberg, 1994),

They discussed many ideas at “the New Pile Committee,” which was composed of
Enrico Fermi, Eugene Wigner (both Novel prize winners), Leo Szilard (coinventor
of the reactor with Fermi), and many other scientists, such as Alvin Weinberg. One
of the ideas was a fast breeder reactor (FBR) utilizing plutonium generation from
U by Fermi and Szilard, and another was a thermal breeder reactor utilizing >*U
generation from thorium by Wigner. Especially, Wigner provided a prospect that the
reactor should be a “chemical engineering device” using liquid fuel because of its
simplicity, and not a “mechanical engineering device” using solid fuel (Weinberg,
1997). Wigner and Weinberg had proposed a liquid fuel reactor in 1945, where aque-
ous heavy water is circulating with 233U-Th fuel (Wigner et al., 1 945).

2 — 3
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Figure 11.30 Peace and international friendship bell at Oak Ridge
Photo by M. Kinoshita.

11.2 Current MSR designs after ORNL (FUJI)

Most ORNL reports including the reference list are available at the following web-
site (2015): http://energyfromthorium.com/pdf/. '

11.2.1 Introduction

After MSR development had been terminated at ORNL in the 1970s, several coun-
tries were inspired by their achievement and continued their work. Since the details
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Figure 11.32 Vertical cross-section of primary system of the MSR-FUIJL.

14 hours of operation in the daytime, 50% power during 8 hours of operation in the
nighttime, and a linear change in between, the average load factor is 81%. Further,
assuming 12 months of operation and 1 month of downtime, the average load factor
amounts to 75%. Therefore, the average load factor in this study is assumed to be
75%. The above-mentioned 30 years operation period is based on the assumption
that the core internals are enclosed in the reactor vessel that is not opened during
the period. If a longer operation period is required, this vessel may be replaced
along with the core internals such as the graphite moderator.

Assuming 30 years operation with a 75% load factor, the irradiation limit of the
graphite moderator equals 4.2 X 10"* cm™2s™" for the fast neutron flux of energy
higher than 52keV. Furthermore, the irradiation limit of the vessel, which is
made of Hastelloy N (Ni-based alloy with Mo/Cr/Nb/Si), is 1.4 X 10'' cm™2s™"
for the fast neutron flux of energy higher than 0.8 MeV, and 7.1 X 10" cm™2s™!
for the thermal neutron flux of energy lower than 1.0 eV. These limits are based on
the MSBR design (Robertson, 1971). These limits are slightly old, and may be
revised due to recent improvements in the manufacturing technology.
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Figure 11.33 Bird’s-eye view of the MSR-FUIJL

When ***Th captures a neutron, >->Th is transmuted to >**Pa (protactinium-233),
which decays to **U with 27 days half-life. In the actual burnup calculation, full-
power operation is assumed, but, in the actual FUJI operation, there is an above-
mentioned 1-month shutdown time, and almost half of ***Pa in the core decays to
2330 in this down time. Since the reactivity-loss due to Pa is about 0.5% delta-K, it
means that about 0.25% delta-K higher reactivity is added due to this effect, and
this will improve neutron economy a little. However, after the reactor is started
again, the core soon reaches equilibrium condition, and the Pa content reaches the
previous equilibrium value. Therefore, this Pa effect is neglected in the calculation.

11.2.4 Calculation procedure for criticality

The criticality of FUJI-U3 is calculated using the nuclear analysis code SRAC95
(Okumura et al., 1996). At first, a collision probability routine PIJ (Tsuchihashi
ctal., 1979) is applied with 107 energy groups for the unit fuel cell model, which is
shown in Fig. 11.34. Nuclear cross-sections of the 107 groups are compressed into
30 groups, which are composed of 24 fast neutron groups and six thermal neutron
groups. Finally, a diffusion calculation by the CITATION (Fowler et al.. 1971) rou-
tine is performed using the cross-sections of the above-mentioned 30 groups. In the
two-dimensional RZ (Radial direction and Z-axis)diffusion calculation, the core is
divided into 65 radial regions and 32 axial zones. In these calculations, JENDL-3.2
(Nakagawa et al., 1995) is used as a nuclear data library.
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Table 11.2 Design parameters of FUJI-U3 (Mitachi et al., 2008)

Electric output 200 MWe

Thermal output 450 MW(th)

Thermal efficiency 44.4%

Reactor vessel

Diameter/height (inner) 540 m/5.34 m

Thickness 0.05m

Core

Diameter/height 4.72 m/4.66 m

Fuel volume fraction (av.) 36 vol.% (see Fig. 11.36)

Fuel path/duct

Width 0.04 m

Fuel volume fraction 90 vol%

Reflector

Thickness 0.30 m

Fuel volume fraction 0.5 vol%

Power density within core 5.5 MW/m®

Multiplication factor c. 1.01

Conversion ratio (av.) 1.01

Temperature coefficient (av) =27 X 107° /K

Maximum neutron flux

Graphite (> 52 keV) 4.1 % 10% ecm™%s™!

Vessel (> 0.8 MeV) 1.4 X 10" cm ™5™
(<1.0eV) 25 X 10? ecm™2s™!

Fuel salt

Composition LiF-BeF,-ThF,-UF,

mol% 71.76-16.0-12.0-0.24"

Volume in reactor 33.6m’

Volume in primary loop 38.8 m’

Flow rate 0.711 m/s

Temperature; in/out 565°C/704°C

Inventory in primary loop

2y 1.133 ¢

Th 564t

Graphite 163.1t

“Initial condition.
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